Pedestrian detection under weather conditions using conditional generative adversarial network
نویسندگان
چکیده
<p>Nowadays, many pedestrians are injured or killed in traffic accidents. As a result, several artificial vision solutions based on pedestrian detection have been developed to assist drivers and reduce the number of Most techniques work well sunny days provide accurate data. However, decreases dramatically rainy conditions. In this paper, new system (PDS) generative adversarial network (GAN) module real-time object detector you only look once (YOLO) v3 is proposed mitigate weather attacks. Experimental evaluations performed VOC2014 dataset show that our performs better than models existing noise reduction methods terms accuracy for situations.</p>
منابع مشابه
Image De-raining Using a Conditional Generative Adversarial Network
Severe weather conditions such as rain and snow adversely affect the visual quality of images captured under such conditions thus rendering them useless for further usage and sharing. In addition, such degraded images drastically affect performance of vision systems. Hence, it is important to solve the problem of single image de-raining/de-snowing. However, this is a difficult problem to solve ...
متن کاملConditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...
متن کاملContext-conditional Generative Adversarial Networks
We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...
متن کاملBidirectional Conditional Generative Adversarial Networks
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples (x) conditioned on both latent variables (z) and known auxiliary information (c). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles z and c in the generation process and provides an encoder that learns inverse mappings from x to both z and c, trained jointly with the...
متن کاملGenerative Adversarial Network based on Resnet for Conditional Image Restoration
The GANs promote an adversarive game to approximate complex and jointed example probability. The networks driven by noise generate fake examples to approximate realistic data distributions. Later the conditional GAN merges prior-conditions as input in order to transfer attribute vectors to the corresponding data. However, the CGAN is not designed to deal with the high dimension conditions since...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IAES International Journal of Artificial Intelligence
سال: 2023
ISSN: ['2089-4872', '2252-8938']
DOI: https://doi.org/10.11591/ijai.v12.i4.pp1557-1568